
Appl ica t ion  o f  X-Ray Photoelectron Spectroscopy t o  Coal Oxidat ion K ine t i cs  

S. R. Kelemen and H. Freund 

Exxon Research & Engineering Company, Annandale, NJ 08801 

Abst rac t  

and Wyoming Powder R ive r  Basin subbituminous coal were quan t i f i ed  between 295 
-398K. XPS was used t o  determine the  changes i n  the  amount o f  surface organic 
oxygen and prov ide  an oxygen func t iona l  group d i s t r i b u t i o n .  GC ana lys is  o f  
the gas phase products and weight changes from TGA experiments were used t o  
place the XPS r e s u l t s  i n  the  context  o f  bu l k  ox ida t ion .  
I l l i n o i s  # 6 coal  produced most ly s o l i d  ox ida t i on  products. The r a t e  o f  
increase exh ib i t ed  Arrhenius behavior w i t h  an apparent a c t i v a t i o n  energy of 
11.4 kcal/mole. Oxidat ion o f  Wyoming Powder River Basin coal a t  398K gave 
mainly gaseous products and a s l i g h t l y  f a s t e r  t o t a l  ox ida t i on  r a t e  r e l a t i v e  t o  
I l l i n o i s  #6 coa l .  The amount o f  oxidized organic s u l f u r  determined by XPS can 
be used t o  evaluate t h e  t o t a l  extent o f  coal ox ida t ion .  

I. In t roduc t i on  

Oxidat ion reac t ions  o f  coal which occur i n  a i r  near room temperature 
cont r ibu te  t o  the  s e l f  heat ing o f  coal and produce detr imental  changes t o  many 
coal p roper t ies .  
p roduc ts . ( l )  A f t e r  ox ida t i on  many aspects o f  t he  s o l i d  coal  have been 
inves t iga ted  and several  p roper t ies  can be used t o  gauge the  ex ten t  o f  
oxidat ion.  
oxygen by d i f f e rence  
the coal  surface.(3,4) 
been used t o  measure ox ida t ion .  
Gieseler f l u i d i t y , ( 6 * 7 )  PH, (8 )  FTIR s ignatures(9) and changes i n  p y r o l y s i s  
response.(lO, 11) 

Despi te t h e  many ava i l ab le  approaches i t  i s  very d i f f i c u l t  t o  
quant i f y  the k i n e t i c s  of low temperature ox ida t ion ,  T < 350K. The t o t a l  
amount o f  s o l i d  ox ida t i on  products a f t e r  several days near room temperature 
can be small. (12,13923-25) There has been a grea ter  number o f  ox ida t i on  
s tud ies  performed a t  h igher temperatures, T > 350K. The connection between 
high and low temperature ox ida t i on  r e a c t i v i t y  i s  no t  we l l  establ ished and f e w  
have adopted a u n i f i e d  approach t o  charac ter ize  both s o l i d  and gaseous 
ox ida t ion  products. 

We have q u a n t i f i e d  several aspects o f  t he  ox ida t i on  o f  I l l i n o i s  # 6 
coal and Powder R iver  Basin coal  between 295-398K. XPS was used t o  determine 
the changes i n  surface organic oxygen. GC ana lys is  o f  gas phase products was 
c a r r i e d  out i n  con junc t ion  w i t h  XPS measurements i n  order t o  provide a more 
complete desc r ip t i on  o f  the  ox ida t ion  process. 
(TGA) r e s u l t s  he lp  p lace  the  XPS in fo rmat ion  i n  the  context  o f  bu l k  ox ida t ion .  

Several aspects o f  the  ox ida t ion  k i n e t i c s  o f  I l l i n o i s  # 6 bituminous 

The ox ida t i on  o f  

Both s o l i d  and gaseous species are produced as ox ida t i on  

These inc lude the  determinat ion o f  the  changes i n  the  amount o f  
by neutron ac t i va t i on  analysis(2) and by XPS ana lys is  o f  

Re la t i ve  changes i n  the p roper t i es  o f  coal  have also 
These inc lude f r e e  swe l l ing  index,(5) 

Thermal Gravimetr ic Analysis 
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11. Exoerimental 

I l l i n o i s  # 6 coal and Powder River Basin coal were obtained f r o m  the  
Exxon Research and Engineering Company Baytown Texas coal sample 1 i b r a r y .  (26) 
Upon rece ip t ,  t he  sealed consignment was t rans fer red  t o  a n i t rogen drybox. 
100-200 mesh cu ts  were prepared and stored i n  the  drybox f o r  l a t e r  use. 

ESCALAB instrument using non-monochromatic MgKu rad ia t i on .  
operated a t  300W, 20ma, 15KV. A complete XPS ana lys is  took  approximately 4 
hours. 
double-sided Scotch nonconducting tape. An energy co r rec t i on  was made due t o  
sample charging based on the  C(1S) peak a t  284.8 (eV) and the  unoxidized 
organic s u l f u r  2p peak a t  164.0 (ev).  Samples were introduced using the  
standard d i f f u s i o n  pumped VG ESCALAB f a s t  en t ry  a i r  lock .  As p rev ious l y  
observed w i t h  o ther  coal samples(3,4,27,28) the  elemental composition o f  t he  
sample remained near ly  constant dur ing  the  measurement per iod;  however, . 
longer- term exposure t o  the  X-ray beam produced damage as evidenced by 
decreases i n  the  i n i t i a l  amount o f  carboxyl carbon and by subsequent increased 
v u l n e r a b i l i t y  t o  surface ox ida t ion  a t  ambient condi t ions.  New samples were 
obtained f o r  measurement a t  every p o i n t  i n  the  ox ida t i on  sequence. 

package using mul t i -scan averaging. 
reso lu t i on .  Elemental concentrations were obtained r e l a t i v e  t o  carbon 
ca lcu la ted  from the  areas o f  t he  XPS peaks corrected f o r  atomic s e n s i t i v i t y .  
The s e n s i t i v i t y  f ac to rs  r e l a t i v e  t o  C(1s) were determined from VG s e n s i t i v i t y  
tab les  and exper imental ly measured standards. 

measurement was compared t o  a standard bu lk  determination. The comparison f o r  
I l l i n o i s  #6 coal  i s  shown i n  t a b l e  I and f o r  Powder River Basin coal i n  t a b l e  
11. 
i n  very good agreement w i t h  bu lk  values. The amount o f  surface organic oxygen 
a lso  compares favorab ly  w i t h  bu lk  der ived values. The amount o f  organic oxygen 
was der ived from XPS r e s u l t s  by tak ing  i n t o  account inorgan ic  con t r i bu t i ons .  
The amount o f  oxygen associated w i t h  s i l i c o n  and aluminum were taken as Si02 
and AlO1.5. With recogn i t ion  o f  the  surface ox ida t ion  o f  p y r i t e ,  t h e  amount 
o f  oxygen associated w i t h  the  inorgan ic  s u l f a t e  (2p) s igna l  was taken as SO4. 
The d i f f e rence  between the  p y r i t e  i r o n  (2p) s igna l  and s u l f a t e  s u l f u r  (2p) 
s ignal  was associated w i t h  oxygen as FeO1.5. 

i s  known from bu lk  ana lys is  t h a t  nea r l y  1/3 o f  the  t o t a l  s u l f u r  i n  t h i s  
I l l i n o i s  # 6 coal  e x i s t s  as inorganic forms w i t h  the  m a j o r i t y  as p y r i t e .  
Table I a lso  shows t h a t  there  i s  a l a rge  discrepancy between the  surface and 
bu lk  values o f  p y r i t i c  and s u l f a t e  s u l f u r  f o r  I l l i n o i s  # 6 coa l .  The value 
f o r  surface p y r i t i c  s u l f u r  i s  based on the  absence o f  the  p y r i t i c  i r o n  (2p) 
s ignal .  These d i f fe rences  are most l i k e l y  a r e s u l t  o f  the  surface ox ida t i on  
o f  p y r i t e .  The XPS s u l f u r  spectrum from I # 6 coal  showed a s u l f u r  2p peak 
centered about 171.3 eV. 
wash a t  room temperature. 
and f e r r i c  su l fa tes .  

XPS spectra were obtained w i t h  an i on  pumped Vacuum Generators 
The source was 

The coal samples were mounted t o  a m e t a l l i c  sample b lock  by means o f  

Data acqu is i t i on  and processing were by means o f  a VGS 2000 software 
The spectra were obtained a t  0.9 eV 

The organic composition o f  t he  s t a r t i n g  coal der ived from an XPS 

Both coals have XPS der ived organic n i t rogen and organic s u l f u r  values 

While there i s  l i t t l e  inorganic s u l f u r  i n  Powder R iver  Basin coal i t  

This peak was subs tan t i a l l y  reduced by a b r i e f  water 
The broad peak i s  i n te rp re ted  t o  a r i s e  from fe r rous  

The r e a c t i v i t y  o f  coal f o l l ow ing  the  water wash was 
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i d e n t i c a l  t o  the  un t rea ted  coa l .  
(2p) s ignal  i s  s h i f t e d  by --1.5 eV t o  higher b ind ing  energy than the  reported 
l i t e r a t u r e  value.(29,30) 
enhanced sample charging o f  these inorganic components i n  our samples. 
could not observe t h e  i r o n  (2p) s ignal  due t o  i r o n  p y r i t e .  

represent the unresolved 2p sp in  doublet. 
Lorentzian l ine shape and a peak width a t  h a l f  maximum o f  2.60 eV f o r  each 
s u l f u r  species. The organic p a r t  o f  the  s u l f u r  2p spectrum showed two main 
peaks tha t  occur a t  164.0 eV and 168.3 eV. 
c h a r a c t e r i s t i c  o f  a v a r i e t y  o f  unoxidized organic species which includes 
thiophenes s u l f i d e s  and mercaptans. While ox ida t ion  t o  produce su l fox ides  
(166.0 eV)131) and s u l f o n i c  ac id  (169.2 eV)(32) w i l l  con t r i bu te  t o  the  
development o f  t he  main 168.3 eV sul  hur 2p) peak, t he  dominant ox ida t i on  
products appear as sul fones( l68.0).  (91-34f 

XPS d i f f e rence  curves were made using the  C(1s) l i n e s  whose areas 
were normalized t o  t h e  value o f  the c lean s t a r t i n g  spectrum. The fo l l ow ing  
methodology was used t o  deconvolute the  p o s i t i v e  peak i n  each carbon (1s) 
d i f f e rence  spectrum. 
w id th  o f  1.80 eV a t  h a l f  maximum f o r  each peak. Four peaks are used i n  the  
deconvolution t h a t  occur a t  286.3 eV, 287.5 eV, 289.0 eV, and 285.2 eV. The 
286.3 eV represents carbon bound t o  a s ing le  oxygen bond ( i . e .  ethers, 
hydroxyls, hydroperoxides), t h e  289.5 eV peak t o  carbon bound t o  two oxygen 
bonds ( i .e .  carbonyl)  and the  289.0 eV peak t o  carbon bound t o  th ree  oxygen 
bonds ( i .e .  carboxy1).(35-40) 
the  289.0 eV peak i n t e n s i t y  and represents the carbon adjacent t o  carboxyl 
carbon and i s  r e f e r r e d  t o  as a 1 peak. 

<25% r e l a t i v e  humidi ty.  Oxidat ion experiments w i t h  gas phase ana lys is  were 
done i n  a quartz reac to r  contained w i t h i n  a furnace. 
dead-ended reac to r  was connected t o  a Bellows pump and a r e c i r c u l a t i o n  loop. 
A gas sample could be taken from the  r e c i r c u l a t i o n  loop f o r  GC ana lys is  v i a  an 
evacuated 2 cc  gas sample valve.  
ana lys is  was a Hewle t t  Packard 5840 equipped w i t h  a thermal conduc t i v i t y  and a 
F I D  detector.  
i n t o  the  quar tz  reac to r  vessel and evacuated t o  1x10-3 Torr .  
was 100 mg. 
P r i o r  t o  ox ida t i on  t h e  f resh  coal samples were heated a t  the  appropr iate 
reac t i on  temperature i n  He f o r  18 hours; t he rea f te r  t h e  amount o f  thermal 
decomposition products were n e g l i g i b l e  compared t o  those produced i n  ox id i z ing  
environments. 
pressur ized t o  200 kPa w i t h  the  reactant gas mix tu re  which consisted o f  
-6.7% oxygen i n  Helium. 
reac tan t  gas was done i n  order t o  avoid the bu i ld -up  o f  excessive amounts o f  
products and t o  keep the reac tan t  02 p a r t i a l  pressure near l y  constant. 
c losed r e c i r c u l a t i o n  reac tor  arrangement enabled the  bu i ld -up  o f  products over 

The s u l f a t e  peak and the  associated i r o n  

We 
This discrepancy i s  most l i k e l y  due t o  a s l i g h t l y  

We deconvoluted the  s u l f u r  (2p) spectrum using a s ing le  peak t o  
We used a mixed Gaussian- 

The 164.0 eV peak i s  

We use a mixed Gaussian-Lorentzian l i n e  shape and a peak 

The i n t e n s i t y  o f  t he  285.2 eV peak i s  f i x e d  t o  

Oxidat ion experiments f o r  XPS k i n e t i c  s tud ies  were done i n  a i r  w i th  

The o u t l e t  o f  the  

The gas chromatograph used f o r  product 

The separat ion column was Porapack Q. Samples were introduced 
The sample s ize  

The reac to r  volume was then pressur ized t o  200 kPa w i t h  helium. 

The samples were evacuated t o  1x10-3 To r r  before being 

Per iod ic  evacuation and p ressu r i za t i on  w i t h  new 

The 
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l ong  times. 
cor rec ted  i n  the  product analysis.  
a i r  i n  a Dupont model 951 thermogravimetric analyzer. 

The l o s s  o f  t he  po r t i on  o f  product gas due t o  gas sampling was 
TGA experiments were done by f l ow ing  dry  

111. Resul ts 

We have monitored the  increases i n  the  amount o f  organic oxygen as a 
func t i on  o f  t ime and temperature. The r e s u l t s  f o r  I l l i n o i s  # 6 coal  are shown 
i n  Figures 1 and 2. 
temperature i s  based on a theo re t i ca l  f i r s t  order expression w i t h  a common 
asymptote corresponding t o  0.085 maximum surface o/c atom r a t i o  increase, o r  
i n  o ther  words an increase o f  8.5 oxygens per 100 carbons. 
using t h e  XPS der ived r a t e  informat ion i s  shown i n  Figure 3. 
the data corresponds t o  an a c t i v a t i o n  energy o f  11.4 kcal/mole and 
pre-exponential o f  4.9~106 (o/c) (day)-1. 

We have measured the corresponding changes i n  weight as a func t i on  
o f  t ime up t o  7 days a t  398K. 
i s  shown i n  f i g u r e  4. The same theo re t i ca l  f i r s t  order curve i s  used t o  f i t  
the  TGA data as the  XPS data bu t  w i t h  an asymptote o f  5.0 wt .% o/C increase. 
The same expression provides an exce l len t  f i t  t o  the TGA data. 

We have measured the changes i n  gas composition which occur under 
s i m i l i a r  experimental cond i t ions  fo l l ow ing  ox ida t ion  f o r  2 days a t  398K. 
Table I11 shows the  changes i n  the  number o f  gaseous molecules expressed 
r e l a t i v e  t o  carbon. The I l l i n o i s  # 6 coal contains 70.87 w t %  carbon. With 
t h i s  in fo rmat ion  we have determined the  wtX increase and oxygen atom r a t i o  
increase r e l a t i v e  t o  carbon expected on the  basis o f  GC data. 
r e s u l t s  i n  Table I V  t o  o ther  experimental informat ion.  There i s  good agreement 
between the  GC and TGA r e s u l t s  f o r  the w t %  increase. 
phase shows the  presence o f  a small amount o f  CO. 
weight loss  due t o  CO evo lu t ion .  The t o t a l  hydrocarbon product ion i s  th ree  
orders o f  magnitude below the  l e v e l s  o f  C02 and H20 and there fore  was no t  
considered. 
g rea ter  than the b u l k  oxygen increase pred ic ted  from an oxygen balance us ing  
gas phase data. The f a c t  t ha t  the  surface enhancement i s  a c t u a l l y  r a t h e r  
small and the  s i m i l a r i t y  o f  the  TGA and XPS k i n e t i c s  imply t h a t  ox ida t i on  
occurs throughout the  bu lk  and t h a t  the  surface ox ida t ion  process i s  a 
r e f l e c t i o n  o f  the  bu lk  phenomenon. 

re la ted  t o  the  changes i n  the  nature o f  t he  oxygen func t iona l  groups. The use 
o f  a d i f fe rence spectrum f a c i l i t a t e s  the  observation o f  the  changes induced by 
ox ida t ion .  Examples o f  a C (1s) d i f f e rence  spectrum are found i n  f i g u r e  5 and 
were obtained a f t e r  a i r  ox ida t ion  o f  I l l i n o i s  # 6 coal a t  398K. 
peak i n  each spectrum occurs near 284.7 eV. A decrease i n  i n t e n s i t y  a t  t h i s  
energy i s  i n d i c a t i v e  o f  a decrease i n  the  amount o f  unoxidized carbon atoms. 
The presence o f  p o s i t i v e  peaks a t  higher binding energies i s  associated w i t h  
increases i n  the  amount o f  oxygen f u n c t i o n a l i t i e s .  
going features are d i f f e r e n t  i n  each spectrum ind ica tes  t h a t  the  func t i ona l  
group d i s t r i b u t i o n  changes dur ing the,course o f  ox ida t ion  a t  398K. Table V 

The curve through the  data po in ts  a t  each d i f f e r e n t  

An Arrhenius p l o t  
The l i n e  through 

A comparison o f  these r e s u l t s  w i t h  t h e  XPS data 

We compare the  

I R  ana lys is  o f  the gas 
We d i d  not q u a n t i f y  t h e  

The increase i n  the  surface oxygen concentrat ion i s  1.4 times 

The changes t h a t  occur i n  the  XPS Carbon (1s) l i n e  shape can be 

The negat ive 

The f a c t  t h a t  t h e  p o s i t i v e  
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shows the increases i n  the  number o f  func t iona l  groups fo l l ow ing  ox ida t ion .  
The in fo rmat ion  was obtained from the  r e s u l t s  o f  t he  deconvolution o f  the  
C (1s) spectrum, the  deconvolut ion o f  t he  s u l f u r  (2p) spectrum and the  
increase o f  t o t a l  organic oxygen. 
associated w i t h  carbonyl and carboxyl types are obtained d i r e c t l y  from the  C 
(1s)  d i f f e rence  spectrum. The amount o f  oxygen associated w i th  s u l f u r  species 
comes f r o m  the  i n t e n s i t y  increase i n  the  s u l f u r  (2p) sul fone peak. The amount 
o f  oxygen associated w i t h  groups bound t o  carbon by a s ing le  bond ( i . e .  ether,  
hydroxyl  and hydroperoxides etc.) i s  obtained from the d i f f e rence  between the  
amount o f  t o t a l  o rgan ic  oxygen and the amount o f  oxygen associated w i t h  
carboxyl, carbonyl, and ox id ized  su l fu r .  

A f t e r  approximately 10 days a t  398K, the  oxygen concentrat ion 
reaches a plateau. There are, however, changes t h a t  happen a t  longer 
ox ida t i on  times. We f i n d  t h a t  t he  carboxyl and ox id ized  organic s u l f u r  
concentrat ion increases wh i l e  t h a t  o f  the  o ther  types decl ine.  Analysis o f  
t he  gas phase changes, contained i n  t a b l e  111, conf i rm t h a t  there  i s  l i t t l e  
change i n  the  bu lk  oxygen t o  carbon r a t i o  over the  same period. 
a lso  show t h a t  t he  I l l i n o i s  coal  continues t o  p a r t i c i p a t e  i n  ox ida t i on  
reac t ions  a t  long  times; however, 02 i s  consumed a t  a much slower ra te .  
and H20 are t h e  main gaseous ox ida t ion  products. While there are s i g n i f i c a n t  
changes i n  the  surface oxygen func t iona l  group d i s t r i b u t i o n ,  the  t o t a l  amount 
o f  bu l k  organic oxygen remains near l y  constant. 

Fol lowing ox ida t i on  a t  294K f o r  170 days we f i n d  t h a t  t he  ma jo r i t y  
o f  oxygen increase i s  associated w i t h  the  format ion o f  carboxyl s t ruc tu res .  
Oxidized surfaces produced a t  s l i g h t l y  higher temperatures and shor te r  times 
a lso  show t h a t  increases i n  carboxyl oxygen i s  responsible f o r  the  m a j o r i t y  o f  
oxygen increase. 

oxygen a f t e r  ox ida t i on  o f  Powder River Basin coal  between 294K and 398K, 
Figure 6. There i s  very  l i t t l e  increase i n  oxygen concentrat ion even a f t e r  
170 days a t  298K. There i s  a lso  very l i t t l e  change i n  the  oxygen func t iona l  
group d i s t r i b u t i o n .  
surface products but a t  much lower l eve l s  than t h a t  p rev ious ly  observed w i th  
I l l i n o i s  # 6 coa l .  
amenable t o  a simple k i n e t i c  descr ip t ion .  The l i n e s  i n  Figure 6 represent a 
l i n e a r  connection o f  da ta  po in ts .  

near room temperature, t he  r e l a t i v e  increase i n  the  amount o f  ox id ized  organic 
s u l f u r  can be subs tan t i a l .  Figure 7 shows the  s u l f u r  2p spectrum o f  f resh  
Powder River Basin coa l  and a spectrum fo l l ow ing  a i r  ox ida t ion  a t  295K. 
164 eV peak i s  due t o  unoxidized organic su l fu r .  A peak develops near 168 eV 
fo l l ow ing  ox ida t i on  and i s  a t t r i b u t e d  t o  the  presence o f  ox id ized  organic 
s u l f u r .  

Analysis o f  t h e  changes i n  the  gas phase composition, Table V I ,  show 
t h a t  t he  ox ida t i on  o f  Powder R iver  Basin coal i s  dominated by gaseous 
products. These r e s u l t s  a lso  support the  XPS f i n d i n g  t h a t  there are on ly  
s l i g h t  changes i n  the  amount o f  organic oxygen dur ing  the  i n i t i a l  ox ida t i on  
pe r iod  a t  398K. 

Increases i n  the  amount o f  oxygen 

The r e s u l t s  

CO2 

We have used XPS t o  monitor t he  changes i n  the  amount o f  organic 

Higher temperature ox ida t i on  resu l ted  i n  the  bu i ld -up  o f  

The changes i n  surface oxygen concentrat ion were no t  

Despi te the  small o r  n e g l i g i b l e  increases i n  t o t a l  organic oxygen 

The 
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Discussion 

We have found t h a t  the  ox ida t i on  o f  I l l i n o i s  # 6 coal produces 
mainly s o l i d  ox ida t i on  products. A s ing le  k i n e t i c  expression was used t o  
model t h e  surface ox ida t ion  k ine t i cs  between 398K and 295K. TGA and GC gas 
phase ana lys is  showed t h a t  the  surface ox ida t ion  k i n e t i c s  r e f l e c t e d  bu lk  
ox ida t i on  behavior. 

Recent F T I R  work on t h i n  sect ions o f  I l l i n o i s  # 6 coal i nd i ca ted  the  
presence o f  two k i n e t i c a l l y  d i s t i n c t  ox ida t i ve  reac t i on  sequences. (23-25) 
slow ox ida t i on  process was ex tens ive ly  character ized a t  393K but was d i f f i c u l t  
t o  measure below 343K.(23-25) A f a s t  ox ida t i on  process was found t o  occur 
over two days a t  295K bu t  was complete a f t e r  30 minutes a t  343K. 
reac t ion  i s  bel ieved t o  r e s u l t  i n  a very small net  decrease i n  the  amount o f  
organic oxygen. Both the  f a s t  and slow ox ida t i on  processes can c o n t r i b u t e  t o  
the  observed ox ida t ion  response o f  coa l .  We were unable t o  i d e n t i f y  the  f a s t  
ox ida t i on  process using XPS. 

coal, an increase o f  2.4 oxygens per 100 carbons was observed a f t e r  ox ida t i on  
f o r  56 days under ex terna l  ambient cond i t ions .  Nonalkylatable oxygen was the  
main product, presumably ether oxygen. 
temperature carboxyl was the  main oxygen surface species. 

coal e x h i b i t s  Arrhenius behavior w i t h  an apparent a c t i v a t i o n  energy o f  11.4 
kcal/mole. 
ox ida t ion ,  a t  a heat ing schedule o f  5°C min-1, demonstrate Arrhenius behavior 
f o r  02 consumption above 413K. 
and 13.2 kcal/mole. 
lower a c t i v a t i o n  energies a t t r i b u t e d  t o  the  inf luences o f  d i f f u s i o n -  
c o n t r o l l e d  processes o r  t o  physical  absorption. (18) A study(22) o f  
subbituminous coal ox ida t i on  k i n e t i c s  demonstrated Arrhenius behavior between 
303K-343K w i t h  a c t i v a t i o n  energies between 15 t o  20 kcal/mole. Apparent 
global  a c t i v a t i o n  a c t i v a t i o n  energies between 12.6 and 24.5 kcal/mole were 
found based on ca lo r ime t r i c  data f o r  a v a r i e t y  o f  coa ls  o f  d i f f e r e n t  rank.(46) 
The energies were determined from data obtained between 373K-423K so as t o  
minimize cont r ibu t ions  due t o  the heat o f  wett ing.  

o f  a f r e e  rad i ca l  ox ida t i on  mechanism.(l2,14,16-18,21,23-25,41-45) E . S . R .  
work provides experimental evidence f o r  t he  changes i n  f r e e  rad i ca l  popu la t ion  
dur ing  coal  ox ida t ion .  (41,421 
have observed can be accounted f o r  w i t h i n  the  framework o f  a f r e e  r a d i c a l  
mechanism.(14,16,44,45) It i s  known t h a t  mineral  ox ida t i on  reac t ions  occur 
simultaneously w i t h  organic ox ida t ion  i n  coal .  (6,29,47-53) The c a t a l y t i c  
p a r t i c i p a t i o n  o f  inorganic com onents toward low temperature organic 

inorgan ic  reac t ions  are general ly regarded as separate processes. 
Nevertheless, the  presence o f  inorganic matter complicates the  i n t e r p r e t a t i o n  
o f  t he  ox ida t i on  k i n e t i c s  based s o l e l y  on gas phase oxygen uptake o r  heat 
release. 

A 

This  

This f a i l u r e  places an up e r  l i m i t  o f  0.01 O/C 
change associated w i t h  t h i s  process. I n  another study( P 2)  o f  I l l i n o i s  # 6 

I n  the present study near room 

The r a t e  o f  increase o f  t o t a l  ox ida t ion  products o f  I l l i n o i s  # 6 

Non-isothermal s tud ies( l8 )  o f  bituminous and subbituminous 

The apparent a c t i v a t i o n  energy i s  between 10.0 
Lower temperature ox ida t ion  was character ized by much 

It i s  genera l l y  bel ieved t h a t  t he  ox ida t ion  o f  coal proceeds by way 

The v a r i e t y  o f  oxygen f u n c t i o n a l i t i e s  t h a t  we 

ox ida t i on  has been considered(5 s ,531 bu t  no t  confirmed. Low temperature 
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Most agree t h a t  a rad i ca l  chain ox ida t i on  mechanism, i nvo l v ing  
decomposition o f  hydroperoxides, explains coal ox ida t ion  behavior a t  moderate 
temperatures. 
are l e s s  ce r ta in .  We f i n d  t h a t  our XPS r e s u l t s  f i t  a s ing le  k i n e t i c  
expression. The oxygen func t iona l  group d i s t r i b u t i o n  observed a t  295K a f t e r  
long times i s  s i m i l i a r  t o  t h a t  found a f t e r  shor te r  ox ida t ion  per iods a t  398K. 
We there fore  conclude t h a t  under our experimental cond i t ions  the  same basic 
chemistry occurs over the  temperature range. 
associated w i t h  the  XPS measurement enables us t o  p lace  an upper l i m i t  o f  0.01 
o/c surface increase t h a t  can be associated w i t h  f a s t e r  ox ida t i on  processes. 

The ox ida t i on  behavior o f  I l l i n o i s  # 6 coal  changes a t  long  times a t  
398K. The surface and bu lk  oxygen concentrat ion remains near ly  constant but 
C02 and H20 are s t i l l  being produced. The t o t a l  ox ida t i on  r a t e  i s  much slower 
than t h e  we l l  de f ined k i n e t i c  process found a t  e a r l i e r  times. The surface 
func t iona l  group d i s t r i b u t i o n  changes. The amount o f  ox id ized  organic s u l f u r  
continues t o  r i s e  along w i t h  carboxyl oxygen, wh i l e  o ther  species dec l ine .  

We have made a l i m i t e d  study o f  Powder R iver  Basin Coal. 
i n i t i a l  ox ida t i on  a t  398K g ives  mainly gaseous products. The t o t a l  extent o f  
ox ida t i on  a f t e r  2 days i s  1.3 t imes t h a t  found w i t h  I l l i n o i s  # 6 coal .  
have monitored the changes i n  the  surface composition a t  lower temperatures 
and f i n d  only small changes i n  the  amount o f  organic oxygen. 
ind ica ted  a h igh  s e l e c t i v i t  toward gaseous products f o r  a low rank c o a l . ( l )  

i n  bu lk  oxygen conten t  was small. 
increases i n  the  amount o f  nonalkylatable organic oxygen. Despi te the  small 
changes i n  t o t a l  organic oxygen, we have found a subs tan t ia l  r e l a t i v e  increase 
i n  the amount o f  ox id ized  organic su l fu r .  

Conclusions 

The dominant reac t ions  t h a t  take place near room temperature 

Consideration o f  t he  e r ro rs  

The 

We 

An e a r l i e r  study 

Previous work on t h i s  coa l (  f 3) a t  room temperature ind ica ted  t h a t  t he  change 
Chemical decarboxylat ion was o f f s e t  by 

1) A s i n g l e  k i n e t i c  expression can be used t o  descr ibe the  surface 
ox ida t i on  o f  I l l i n o i s  # 6 coal from 398K t o  295K. 

2) The surface ox ida t ion  k i n e t i c s  observed a t  398K r e f l e c t s  bu lk  
ox ida t i on  behavior. We were unable t o  i d e n t i f y  any f a s t e r  
ox ida t i on  process f o r  I l l i n o s  # 6 coal .  
upper l i m i t  o f  0.01 O/C on the  amount o f  surface oxygen change 
t h a t  can be associated w i t h  f a s t e r  ox ida t i on  processes. 

3) A much slower ox ida t ion  process was i d e n t i f i e d  a t  398K a f t e r  
r e a c t i n g  I l l i n o i s  # 6 coal f o r  l ong  times. The t o t a l  surface 
oxygen concentrat ion remains near ly  constant bu t  t he  oxygen 
func t i ona l  group d i s t r i b u t i o n  s h i f t s  towards carboxyl and 
ox id i zed  su l fu r .  

4) The i n i t i a l  ox ida t ion  o f  Powder R iver  Basin coal  a t  398K 
produces mainly gas. The t o t a l  ox ida t i on  a f t e r  2 days i s  1.3 
t imes g rea te r  than observed w i t h  I l l i n o i s  # 6 coa l .  

There i s  a s ign i f i can t  r e l a t i v e  increase i n  the amount o f  
ox id i zed  organic s u l f u r  dur ing  295K ox ida t i on  o f  Powder River 
Basin coa l .  
constant.  

This f a i l u r e  places an 

COz i s  the  main gaseous product. 

5) 

The t o t a l  amount o f  organic oxygen remains almost 
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Atom 
r a t i o  r e l a t i v e  
t o  carbon x 100 

Organic 
Su l fu r  

Su l fa te  
Su l fu r  

P y r i t i c  
Su l fu r  

Organic 
Oxygen 

N i t rogen 

Atom 
r a t i o  r e l a t i v e  
t o  carbon x 100 

Organic 
Su l fu r  

Su l fa te  
Su l fu r  

P y r i t i c  
Su l fu r  

Organic 
Oxygen 

Nitrogen 

I #6 coal 
Fresh 
XPS 

1.68 

1.19 

0.00 

10.3 

1.4 

Table I 

I #6 coal  
Fresh 

Bul k Anal v s i  s 

1.45 

0.02 

0.62 

9.9 

1.4 

Table I1 

Powder River Basin 
Fresh 

XPS 

0.42 

0.03 

0.00 

19.3 

1.1 

I #6 coal 
Water Wash 

x PS 

1.65 

0.32 

0.00 

11.6 

1.4 

Powder River Basin 
Fresh 

Bulk Analysis 

0.47 

0.027 

0.005 

20.1 

1 .o 
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Table I 1 1  

Changes i n  the  gas composition a f t e r  ox ida t ion  
o f  I l l i n o i s  #6 coal a t  398K 

Time 2 Days 13 Days 48 Days 

02/carbon (x100) -1.74 -5.48 -8. 73 

C02/carbon (x100) 0.33 1.68 4.46 

L HzO/carbon (x100) 0.16 0.45 1.06 
L 

Change i n  Bulk 
oxygen/carbon (x100) 2.7 7.1 
based on GC data 

6.9 

Table IV 

Comparison o f  the  Changes found a f t e r  
ox ida t ion  o f  I #6 coal  a t  398K f o r  2 days 

Oxygen atom 
W t %  r a t i o  increase 

Increase r e l a t i v e  t o  carbon x l00  

From GC 
Experiment 

From TGA 
Experiment 

I 
From XPS 
Experiment 

i 
i 

2.3 2.7 

2.7 

- - -  

- - -  

3.9 

I 
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Table V 

Amount o f  oxygen increase per 100 carbons Associated w i t h  Various 
Functional Types Fol lowing A i r  ox ida t ion  o f  I l l i n o i s  #6 coal 

Total  Ether 
Organic hydro- 

TemDerature Time increase Carboxvl S u l f u r  Carbonyl Alcohol 

295K 170 days 3.8 2.1 0.3 0.7 0.7 

398K 15 days 8.2 4.2 0.7 2.6 0.7 

398K 41 days 8.1 4.9 1 .o 1.4 0.8 

398K 54 days 8.6 6.4 1.3 0.4 0.5 

Oxidat ion Ox ida t ion  Oxygen Ox i d i zed peroxide 

Table V I  

Changes i n  the  gas composition a f t e r  ox ida t ion  
o f  Powder R iver  Basin coal a t  398K 

Time 2 Days 13 Davs 

Op/carbon (x100) -2.32 

C02/carbon (x100) 2.10 

H20/carbon (x100 0.47 

oxygen/carbon (x100) 
based on GC da ta  

Change i n  bu lk  -0.03 

-6.33 

5.37 

1.45 

0.47 
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Figure 1. Change i n  the organic oxygen (Is) t o  carbon (1s) XPS atom r a t i o  as 
a function of  exposure time at  398K and 318K i n  a i r  f o r  I l l i n o i s  
I 6 coal 
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Figure 2. Change i n  the organic oxygen (1s )  t o  carbon (1s )  XPS atom r a t i o  as 
a function o f  exposure time a t  351K and 295K i n  ai.r f o r  I l l i n o i s  
# 6 coal 
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Figure 3. Comparison of the TGA wtX increase and the XPS oxygen (1s )  to 
carbon (1s )  atom ratio increase as a function time at 398K for 
Illinois # 6 coal 
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Figure 5. 
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Power River Basin Coal Oxidation 
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F igure  7. XPS s u l f u r  (2P) spectrum from 

A )  
B) 
C )  

f resh  Powder River Basin coal 
a f t e r  ox ida t i on  f o r  170 days a t  295K 
a f t e r  ox ida t i on  f o r  90 days a t  398K 
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